Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Rev Microbiol ; 21(7): 431-447, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36894668

RESUMEN

Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.


Asunto(s)
Antibacterianos , Infecciones Estreptocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrólidos/farmacología , Macrólidos/uso terapéutico , Farmacorresistencia Bacteriana , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Streptococcus pyogenes/genética , Penicilinas/uso terapéutico
3.
Nat Commun ; 14(1): 1051, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828918

RESUMEN

A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.


Asunto(s)
Escarlatina , Infecciones Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Escarlatina/epidemiología , Superantígenos , Proteínas Bacterianas/genética , Reino Unido , Exotoxinas/genética , Mutación , Australia
4.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34860143

RESUMEN

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Asunto(s)
Asma/inmunología , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Asma/metabolismo , Asma/fisiopatología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL
5.
Mucosal Immunol ; 13(4): 652-664, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32066837

RESUMEN

The type-2 inflammatory response that promotes asthma pathophysiology occurs in the absence of sufficient immunoregulation. Impaired regulatory T cell (Treg) function also predisposes to severe viral bronchiolitis in infancy, a major risk factor for asthma. Hence, we hypothesized that long-lived, aberrantly programmed Tregs causally link viral bronchiolitis with later asthma. Here we found that transient plasmacytoid dendritic cell (pDC) depletion during viral infection in early-life, which causes the expansion of aberrant Tregs, predisposes to allergen-induced or virus-induced asthma in later-life, and is associated with altered airway epithelial cell (AEC) responses and the expansion of impaired, long-lived Tregs. Critically, the adoptive transfer of aberrant Tregs (unlike healthy Tregs) to asthma-susceptible mice failed to prevent the development of viral-induced or allergen-induced asthma. Lack of protection was associated with increased airway epithelial cytoplasmic-HMGB1 (high-mobility group box 1), a pro-type-2 inflammatory alarmin, and granulocytic inflammation. Aberrant Tregs expressed lower levels of CD39, an ectonucleotidase that hydrolyzes extracellular ATP, a known inducer of alarmin release. Using cultured mouse AECs, we identify that healthy Tregs suppress allergen-induced HMGB1 translocation whereas this ability is markedly impaired in aberrant Tregs. Thus, defective Treg programming in infancy has durable consequences that underlie the association between bronchiolitis and subsequent asthma.


Asunto(s)
Asma/etiología , Asma/metabolismo , Bronquiolitis/etiología , Bronquiolitis/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Alérgenos/inmunología , Animales , Asma/patología , Biomarcadores , Bronquiolitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Proteína HMGB1/metabolismo , Inmunización , Ratones , Transporte de Proteínas , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Front Immunol ; 8: 156, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261214

RESUMEN

Severe viral lower respiratory infections are a major cause of infant morbidity. In developing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, whereas in developed nations the disease represents a major risk factor for subsequent asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene-environmental interactions that affect the host response to RSV infection. Emerging evidence suggests that the excessive inflammatory response and ensuing immunopathology, typically as a consequence of insufficient immunoregulation, leads to long-term changes in immune cells and structural cells that render the host susceptible to subsequent environmental incursions. Thus, the initial host response to RSV may represent a tipping point in the balance between long-term respiratory health or chronic disease (e.g., asthma). The composition and diversity of the microbiota, which in humans stabilizes in the first year of life, critically affects the development and function of the immune system. Hence, perturbations to the maternal and/or infant microbiota are likely to have a profound impact on the host response to RSV and susceptibility to childhood asthma. Here, we review recent insights describing the effects of the microbiota on immune system homeostasis and respiratory disease and discuss the environmental factors that promote microbial dysbiosis in infancy. Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral bronchiolitis as a strategy to prevent the onset and development of asthma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...